
within the scope of the present model with the condition r, # ro at the tube inlet. The re- 
sults of such a calculation are shown in Fig. 4. 

NOTATION 

t, time; r, local value of radius; ro, tube radius; r,, radial coordinate of interfaclal 
surface; z, longitudinal coordinate; z,, longitudinal coordinate of interfaclal surface; Zin , 
length of inlet zone; Z, tube length; T, temperature; T,, temperature of phase change; To, tube 
wall %emperature; R, universal gas constant; E, energy of activation of viscous flow; Qe, spec- 
ific heat of the phase change; P, pressure; Q, liquid flow rate; • y, S, q, dimensionless pa- 
rameters; G, difference in pressure drops calculated by various models; %,, %2, thermal conduc- 
tivlties of the liquid and solid phases, respectively; p,, c~, density and heat capacity of 
liquid phase; Vz, Vr, axial and radial components of the liquid velocity; Trz, shear stress; 
~, viscosity; no, preexponential multiplier. 
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NUMERICAL ANALYSIS OF THE TRANSPORT PHENOMENON IN SEMICONDUCTOR DEVICES 

AND STRUCTURES. 

5. THREE-DIMENSIONAL MODELING OF VLIS ELEMENTS 

I. I. Abramov and V. V. Kharitonov UDC 621.382.82.001:519,95 

The high efficiency of a multidimensional numerical analysis of semiconductor de- 
vices is confirmed in an example of three-dimensional modeling of Bipolar integral 
circuit structures. 

A change in the configuration of the components in the plane of the crystal, i.e., their 
topology, is the approach approved in practice for improving the characteristics of LIC and 
VLIC elements. In this case, despite the possible signiflcantmachlne time expenditures, the 
three-dimenslonal modeling of transport processes occurring in the elements [i, 2] is neces- 
sary in principle. Such an analysis in the preliminary stage of VLIC design permits complete 
investigation, without involving significant material expenditures, of the influence of dif- 
ferent topological factors on the structure properties, which is extremely important for the 
engineer-developer in the creation of new optimized structures of elements arid investigation 
of the influence of the chan~es made On the whole integrated circuit. As is known, this lat- 
ter is realized by involving the programs of the circuit engineering design stage [2], 

Traditionally it is considered that execution of a rigorous three-dimensional numerical 
analysis (coordinate solution of the problem mentioned)~of just several stationary states of 
the element by solving the fundamental system of equations [3] is impossible in a reasonable 
time even on an ES-1060 type computer. 

The inconsistency of such an assertion is shown in this paper. Results are cited for 
this that have been obtained for two fundamental kinds of bipolar structures of integrated 
circuits and that confirm the high efficiency of the universal program developed for three-- 
dimensional numerical modeling of VLIC elements later designated "TREADE." Underlying it is 
the generalized and perfected method of previous papers [3-6]. 
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The numerical solution of the fundamental system of equations [6] with the auxiliary re- 
lationships following directly for the current densities is realized in the three-dimensional 
modeling of transport phenomena in semiconductor devices: 

j~ = - - q ~ n  v (~ + AAVz) + q~r~nV n, (i) 

Jv = --q~pPV [~ - -  (l - -  A) AVe] - -  q~r~pVP. (2) 

T a k i n g  a c c o u n t  o f  t h e  e f f e c t s  o f  t h e  h i g h  d o p i n g  l e v e l  i s  b y  one  o f  t h e  e m p i r i c a l  mode l s  [7] 
with Yn = YP ffi i. Traditional boundary conditions [8] are utilized here. 

In the preliminary stage a flnite-difference approximation is realized for the fundamen- 
tal system of equations with the boundary conditions and the appropriate initialdata by using 
the G. I. Marchuk integral identity method in order to derive a hierarchy of models for ~he 
difference scheme coefficients. In the foreig~ literature the box integration method [8] is 
often used to construct difference schemes in the multidimensional case within the framework 
of the general integrointerpolation approach of A. N. Tikhonov and A. A. Samarskii [9]. It is 
important to note that these two methods result in different finite-difference approximations 
of the equations, as follows from the subseqbent exposition. 

Let us consider the generalization of the G. I. Marchuk method to the multidimensional 
case. Because of awkwardness, we present only the scheme to derive the fundamental integral 
identity and the form of the corresponding approximate problem in the two-dimensonal case. 
The extension to the three-dimensional case is realized by an analogous method. 

After a number of simple manipulations each of the three fundamental equations to be 
solved (electron and hole continuity and Poisson equation) can be represented in thegeneral 
form 

0 ~ O~ M O M O~ M qM ~ 

Ox p Ox OY p " a Y  - +  = tM' (3)  

where for the continuity equation of the electrons 

p~ = _ _ ~ , n i ~ r e X p ( ~ / ~ r )  ' qM = O, M = exp( - -~n /~r ) ,  [M = R, (4) 

of holes 
M P = ~pnip~rexp(_~/~r) ,  qM O, M = exp(Op/~r) ' fM = - - R  (5) 

and for Poisson equation 

pM=_=e, ~=% qa=O, 
(6) 

[M = q { n i ~ e x p [ ( ~ _ ~ , ) / ~ r l _ n i p e x p [ ( ~ p _ ~ ) / ~ r ] _ N d + N a } .  

We realize construction of the difference scheme for (3) in the main {x~}, {yd} and auxiliary 
{xi+x/u = (x i + xi+,)/2}, {yj+,/a = (yj + yj+x)/2} meshes of the spatial disc~etization. 

We use (3) in two forms 

O M O~ M qMfM 
ox p ~ + = I~, (7) 

0 M O~ M qMfM 
ov p -~d -+ = t f ,  (s)  

where  

fM fM O M O~ M = + - ~ p  @ 
O M O~ M 

~ ,  t~=tM+---~-p  Ov " 

Let us apply the G. 
obtain 

I. Marchuk [I0] method first to t h e  relationship (7). 

Yi+l/2 xi+l/2 
M M 

- s , + , . .  + s~_,/~. + (Av~)-' S J 
9i--1/2 xi--l/2 

(qM T M __ fM) dxdy = O, 

We consequently 

(9) 

850 



where Ayj = Yj+*/a --yj_*/~, 

Yj-]- 1 / 2 xi 

S [ S 
Yj--I /2 *i--I  (1o) 

Yj.+ 1/2 xi 

i i 
Yj-- I/2 xi-- 1 xi-- 1/2 

To derive the main integral identity we expand one of the integrals in the left side of (9) 

y/q- l /2  xiq-I /2 Y j+I /2  Xi+l /2  

i , jq - I lg  - -  " ] i , j - - l / " )AXi ,  

Yj--1/2 xi--1/2 Yj--1/2 Xi--l/2 

( l l )  

where &x i = xi+~/a - xi_,/a. The well-known property of multiple integrals was used here. 

To find jM jM ( i,j+,/a )_ in (ii) and (9), an analogous approach is used as for the 
i,j-i/2 

derivation of (i0), however with the just essential difference that (8) is the initial equa- 
tion in this case. Let us note that the relationships obtained as a result of such manipula- 
tions although awkward are exact integral identities or balance equations. 

It is easy to show that 

Ah~ h = [~ (12)  

M 
c a n  b e  u s e d  a s  an  a p p r o x i m a t e  p r o b l e m  f o r  q = 0 ( e a s e  u n d e r  c o n s i d e r a t i o n ) ,  w h e r e  f o r  e a c h  
inner node of the spatial discretization mesh (i, j) 

h fl 
~pi+ l , i  -- cPi , i  (A h h, _ (Axi)-~ 

cp h , . i  = Yi+l/g xiq-1 

Yj--I/2 xi 

~9i , i  - -  e p i _ l  , j  

y i ' ~ 2  x i 

YI--I/2 xi--I 

h h / 

xi+ 1/2 yj+ 1 

xt--1/2 Y) 

~i, i  -- ~i , i - I  
xi+ t/2 YJ . 

S [ S 
Xi--l]2 Y/--1 

yf+i/2 xi+i/2 

gi-11e xi-u2 

Comparison with the box integration method ([Ii], say) shows that the G. I. Marchuk method is 
a more general and flexible instrument for the construction of difference schem~s because of 
the possibility of utilizing different approximations for double integrals of p . 

Difference schemes for the electron and hole continuity ~qua~ions an~ the Poisson equa- 
tions are obtained by substitutlon, of appropriate values of p , ~ , qM f from relationships 
(4)-(6) into equations of the form (12). After this, physical propositions from the following 
set are relied upon (in the box) to approximate the integrals in an expression of the type 
(12): I) a weak change in ~pn~p~Tr 2) constancy of the Fermi quasilevel; 3) linear 
changes in the concentration, chemical and electrostatic potentials recombination. It is 
interesting to note that if the initial fundamental system of equations is considered in a 
box, then two assumptions about the constancy of the Fermi quasilevel and on the linearity of 
the change in electrostatic potential will correspond separately to the underlying physical 
approximations of the theory of semiconductor devices on quaslequilibrium (jp = 0, Jn = 0) and 
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quasineutrality (VeV~ : 0). However, it must be recalled that in the case under consideration 
these assumptions are used to construct the difference scheme by using an approximate problem 
of the form (12) and not in the initial continuity of the model. On the whole, reliance on 
the conservation laws (conservative schemes) and physical assumptions assures elevated accur- 
acy and stability of the finite-difference approximation of the fundamental system of equa- 
tions. In the one-dimensional case the presence of these properties is proved rigorously for 
the approximate problem [I0]. The methods of approximating integrals in expressions of the 
type (12) and the derivation of a hierarchy of models for the difference scheme coefficients 
do not differ especially essentially in any way from those described in [3, 12] for the con- 
tinuity equations and in [13] for the Poisson equation; consequently, we do not consider them. 
Unfortunately, because of the extreme awkwardness it is not possible to present a list of the 
difference scheme coefficients for each of these equations. 

As a result of the finite-difference approximation of the fundamental system of equations 
in the basis of the variables Cn, ~-, ~, we obtain a general difference scheme in the three p 
mesh vectors {~t}, {~nt }, {~pt }, where the subscript t runs through values in all nodes of the 
fundamental three-dimensional spatial discretization mesh covering the device. Later (for 
simplicity), we write ~, ~n, Cp, and omit the subscript t. 

After the manipulations considered above, quasilinearization of the discrete analog of 
the Poisson equation is realized with respect to ~ for fixed ~n' ~' n~, n~. The general 
form of the matrix equation after the return passage to ~he ~, n, p variaD• corresponas to 
(i0) in [5], The electron and hole continUity equations are also quasilinearized with respect 
to ~n and 6p for fixed ~ only after an analogous return passage of the equations to the basis 
of the n, p, ~ variables by using the relations (4) from [6], Equations of the form (Ii) and 
(12) from [5] will be the result. The solution of the matrix equations obtained will be re- 
alized by the method elucidated in [5]. It is necessary to recall here that in each iteration 
of methods difference-scheme coefficients and more accurately the appropriate quasilinear- 
ized equations can be calculated by different formulas from the preliminarily derived hier- 
archy of models for each of them. The method of [6, 14] is used to select the initial approx- 
imation. The solution of the systems of linear algebraic equations that occur is realized by 
using the three-dimensional versions of the cyclic method of Chebyshev and Buleev [4], 

At the present time, two promising and mutually supplementing tendencies were noted in 
the development of program support for the solution of problems of two-dimensional numerical 
modeling of VLIC elements, namely: i) creation of program complexes for effective and economi- 
cal computation of different elements in which the specifics of their operation is taken into 
account [15], 2) development of general-purpose programs permitting simulation of the struc- 
ture with an arbitrary quantity of p--n junctions [6, 14]. The development of the latter as- 
pect in the three-dimensional case is continued in this paper. 

The method described was the basis for the general-purpose program of a three-dimension- 
al numerical analysis of the Semiconductor devices and structures "TREADE" written in the 
language FORTRAN-IV for electronic computers of the ES series (operation system OS). The in- 
sertion and list of initial information is analogous to [6]. We just note here that not re- 
quired in the program "TREADE," as compared with "PNAIIL" [6], is the preliminary transforma- 
tion of the initial data about the real structure of the VLIC element, which can also, gen- 
erally speaking, have an arbitrary quantity of p-n junctions. However, it is conceivable that 
its real possibilities are entirely and completely determined by the calculational resources 
of the electronic computer being utilized. 

Let us consider certain results obtained by using the program "TREADE." Thus, it was used 
to realize the numerical modeling of two fundamental kinds of bipolar structures: a bipolar 
transistor with vertical structure (Fig. i) and a single-collector I2L element (Fig. 2). The 
geometric dimensions of the structures (Figs. I and 27 are given in microns. The doping level 
of the transistor in Fig. 1 is: emitter ~i02~ cm -s, base -1018 cm -s, collector i0 x6 cm -s 
For the element in Fig. 2: injector and base -1.4.10 xe cm -s, epitaxial film n- - 1.2.10 ~6 cm -s 
latent emitter layer -2.i0 xB cm -s, collector -1.2-i02~ cm -s. 

The computation time needed for numerical modeling of the transistor (see Fig. i) was 
approximately ii min for the ES-1060 electronic computer for an emitter-base bias Ve.b. = 
--0.7 V and a collector-base bias Vc. b = 0 V. Analogous results were also obtained for the 
biases Ve. b =--0.7 V, Vc. b = i V. The solution was carried out on a quasiuniform mesh in the 
device domains with 25 x 24 x i0 nodes. Therefore, the total number of unknowns is around 
18,000. According to the data of [8], approximately 1500 min is required for the electronic 
computer CYBER-175 to model such a structure for biases Ve. b = --0.65 V, Vc. b = i V by using 

852 



\K 

Fig~ I. Shape of the bipolar 
transistor being analyzed. 

N P~P I P 'n_ " ~-qeel 

Fig. 2. Structure of the I=L elem- 
ent being analyzed. 

Fig. 3. 

/0-2 

i 

I I /0-3 2 3 h'HT 

Convergence of  the i t e r a t i o n  
process of  the method, 

the algorithm STEPSOLVING, which indicates the sufficiently high efficiency of the program 
"TREADE," and therefore, of its underlying methodology. 

Additional necessary information illustrating the high efficiency of the method utilized 
is the results on the convergence of the iteration process of the method. These data are 
presented in Fig. 3 for Ve. b =--0.7 V, V c b = 0 V (curve I) and V e b =--0.8 V, ~c.b = 0 V 
(curve 2). The traditional criterion was'used to terminate the iteration: I~11max/T ~ g*. 
For curve 1 we have E* = 0.002, and e* = 0.02 for curve 2, which is sufficient for the biases 
under consideration [16]. As the results of three-dimensional modeling show, taking account 
of high doping level effects (for empirical models) exerts negligible influence on the rate 
of convergence of the method. 

It must be emphasized that the time expenditures required for the numerical modeling of 
the two kinds of structures are reasonable, which also indicates high efficiency of the pro- 
gram "TREADE." Thus the time expenditures for the electronic computer ES-1060 to compute 
the I=L element (see Fig. 2) for the typical biases V i = 0.65 V, V b = V c = V e = 0 V were ap- 
proximately 122 min (E* = 0.002). The solution was obtained on a quasiuniform mesh in the 
device domains, with 25 • 58 x i0 nodes in the x, y, z measurements, respectively. Therefore, 
the total number of unknowns (nonlinear algebraic equations) was around 43,000 in this case; 
consequently, the distributions of the fundamental variables n, p, ~ and others are indeed not 
presented in this paper. It is pertinent to note here that the development of special machine 
methods of processing the output information about these unknowns for three-dimensional mod- 
eling with reliance on different technical facilities is still more urgent as compared with 
the two-dimensional case [17]. The prospect for these purposes can turn out to be the util- 
ization of the method of automatic synthesis of equivalent circuits [12] as well as different 
physical principles and assumptions [17]. 

Therefore, the data presented indicate the sufficiently high efficiency of the developed 
general-purpose program for three-dimensional numerical modeling of the VLIC elements "TREADE" 
and its underlying methodology for a multidimensional analysis of transport phenomena in semi- 
conductor devices and structures. 

NOTATION 

~, electrostatic potential; n, p, electron and hole concentrations; NA, Na, donor and 
acceptor concentrations; Bn' ~p' electron and hole mobilities; q, electron charoe; Jn' 3p, 
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electron and hole current density vectors; A, coefficient of asymmetry in narrowing; AVg, 
total narrowing of the forbidden bandwidth; y., y_, degree of electron and hold degeneration: 
~T, temperature potential; #n, #-, electron a~d h~le Fermi quasilevels; n~., n~n , effective 
proper electron and hole concentrations equal to niY n exp (AAV~/~T) and n[~_ ex~ [(i ~ A)i 
AVg/~T], respectively; R~ excess of the recombination velocity gbove the generation velocity; 
~; dielectzic permittivity of the material; Bi,j, value of the variable B at the node of the 
spatial discretization mesh with the subscripts i, j; 16~*Imax, maximal value of {l~i ~I} in 
the first Newton iteration; Vi, Ve, Vb, Vc, ohmic contact potentials of the injector, elitter, 
base, and collector, respectively; and Nit, number of complete iterations of the method. 
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HEAT AND MASS TRANSFER IN SKIN FORMATION 

N. I. Nikitenko and Yu. N. Kol'chik UDC 536.24 

A mathematical model of the heat conduction and diffusion on heating an oxidizing 
metal is presented, together with a numerical method of calculation. 

On heating ingots and semifinished articles in furnaces, their outer surface is oxidized, 
which leads to significant loss of material. The skin layer formed on oxidation has relative- 
ly low heat conduction and a high specific volume, and consequently this layer appears as a 
heat-insulating coating [1-3], which must be taken into account in optimizing the heating of 
metallic bodies. 

It has been established that, in the skin layer, diffusion of metal to the outer surface 
occurs, and it is mainly oxidized at this surface [4]. The concentration distribution of the 
components in the oxide has apparently not previously been considered. Skin formation on 
heating a body of arbitrary form may be described mathematically as~follows. Suppose that W~ 
and W~ are regions of space (x, y, z) occupied by the metal and its skin; F, is the boundary 
between the metal and the skin; F~ is the external boundary of the skin; t~ and t= are temp- 
erature functions for the metal and the skin; C is the concentration of unoxidized metal in 
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